Nash Poker

Posted onby admin
Nash Poker Average ratng: 4,0/5 6358 reviews

Powerful poker tools and mathematical models have have enabled poker players to develop and implement game-theory based unexploitable and optimal poker strategies and plays in specific, key situations. One concept which is highly applicable to poker tournaments and SNGs is 'Nash Equilibrium'. Poker Equity Odds Calculator and Combinatorics allows you to compare hands and get equity from millions of possible outcomes. Matt Berkey, High Stakes Cash Game Player and Founder of Solve For Why Academy says 'Preflop+ is a great tool. It takes all the Nash Charts and distills them at your fingertips.

Versatility of calculations

Calculation of equilibrium ranges in mixed unrestricted strategies include 3-way pots and all ties.

Calculation with locked pure strategies is available. This feature allows to use application as ICM calculator.

Nearby table chips are taken into account

You can include up to 20 players in calculations. This functions is really useful for MTSNG, on MTT final stages.

Automatic analysis of imported hands history

The function allows to quickly detect hands with mistakes or warnings.

Import from hand history. Available trackers: PokerTracker 3, PokerTracker 4, HoldemManager 1, HoldemManager 2. In text form: PokerStars, iPoker, PartyPoker, FullTilt.

Quiz mode. Train yourself.

Various modes and difficult levels are supported. Ranges for opponents are set using Nash's Equilibrium.

Customer reviews

  • SimpleNash has almost the same functionality like ICMizer and HRC, or even better and don't charge for it!!! I am very pleased for this tool. Very useful for push-fold ICM spots.

  • free and best icm push fold calculator for poker

  • best app for learning push fold on the preflop. solves any spots very fast. helped me a lot in understanding ICM strategies

Nash poker hu

Send Feedback

Upload screenshot

Other payment methods

If you wish to pay by other means, such as Skrill or poker room transfer, please contact us via Skype

SimplePokerNash Poker

System requirements

  • Support of SSE2 (all modern CPUs)
  • 4 GB (at least 1 GB of free RAM)
  • 70 MB
  • Windows XP, Vista, 7, 8, 10
  • Internet access for activation

Possible payment methods

Kuhn poker is an extremely simplified form of poker developed by Harold W. Kuhn as a simple model zero-sum two-player imperfect-information game, amenable to a complete game-theoretic analysis. In Kuhn poker, the deck includes only three playing cards, for example a King, Queen, and Jack. One card is dealt to each player, which may place bets similarly to a standard poker. If both players bet or both players pass, the player with the higher card wins, otherwise, the betting player wins.

Game description[edit]

In conventional poker terms, a game of Kuhn poker proceeds as follows:

  • Each player antes 1.
  • Each player is dealt one of the three cards, and the third is put aside unseen.
  • Player one can check or bet 1.
    • If player one checks then player two can check or bet 1.
      • If player two checks there is a showdown for the pot of 2 (i.e. the higher card wins 1 from the other player).
      • If player two bets then player one can fold or call.
        • If player one folds then player two takes the pot of 3 (i.e. winning 1 from player 1).
        • If player one calls there is a showdown for the pot of 4 (i.e. the higher card wins 2 from the other player).
    • If player one bets then player two can fold or call.
      • If player two folds then player one takes the pot of 3 (i.e. winning 1 from player 2).
      • If player two calls there is a showdown for the pot of 4 (i.e. the higher card wins 2 from the other player).

Optimal strategy[edit]

The game has a mixed-strategyNash equilibrium; when both players play equilibrium strategies, the first player should expect to lose at a rate of −1/18 per hand (as the game is zero-sum, the second player should expect to win at a rate of +1/18). There is no pure-strategy equilibrium.

Kuhn demonstrated there are infinitely many equilibrium strategies for the first player, forming a continuum governed by a single parameter. In one possible formulation, player one freely chooses the probabilityα[0,1/3]{displaystyle alpha in [0,1/3]} with which he will bet when having a Jack (otherwise he checks; if the other player bets, he should always fold). When having a King, he should bet with the probability of 3α{displaystyle 3alpha } (otherwise he checks; if the other player bets, he should always call). He should always check when having a Queen, and if the other player bets after this check, he should call with the probability of α+1/3{displaystyle alpha +1/3}.

The second player has a single equilibrium strategy: Always betting or calling when having a King; when having a Queen, checking if possible, otherwise calling with the probability of 1/3; when having a Jack, never calling and betting with the probability of 1/3.

Complete tree of Kuhn poker including probabilities for mixed-strategy Nash equilibrium. Dotted lines mark subtrees for dominated strategies.

Generalized versions[edit]

In addition to the basic version invented by Kuhn, other versions appeared adding bigger deck, more players, betting rounds, etc., increasing the complexity of the game.

3-player Kuhn Poker[edit]

A variant for three players was introduced in 2010 by Nick Abou Risk and Duane Szafron. In this version, the deck includes four cards (adding a ten card), from which three are dealt to the players; otherwise, the basic structure is the same: while there is no outstanding bet, a player can check or bet, with an outstanding bet, a player can call or fold. If all players checked or at least one player called, the game proceeds to showdown, otherwise, the betting player wins.

A family of Nash equilibria for 3-player Kuhn poker is known analytically, which makes it the largest game with more than two players with analytic solution.[1] The family is parameterized using 4–6 parameters (depending on the chosen equilibrium). In all equilibria, player 1 has a fixed strategy, and he always checks as the first action; player 2's utility is constant, equal to –1/48 per hand. The discovered equilibrium profiles show an interesting feature: by adjusting a strategy parameter β{displaystyle beta } (between 0 and 1), player 2 can freely shift utility between the other two players while still remaining in equilibrium; player 1's utility is equal to 1+2β48{displaystyle -{frac {1+2beta }{48}}} (which is always worse than player 2's utility), player 3's utility is 1+β24{displaystyle {frac {1+beta }{24}}}.

Nash Poker Shove Chart

Nash push fold charts

Nash Poker Chart

It is not known if this equilibrium family covers all Nash equilibria for the game.

References[edit]

  • Kuhn, H. W. (1950). 'Simplified Two-Person Poker'. In Kuhn, H. W.; Tucker, A. W. (eds.). Contributions to the Theory of Games. 1. Princeton University Press. pp. 97–103.
  • James Peck. 'Perfect Bayesian Equilibrium'(PDF). Ohio State University. Retrieved 2 September 2016.:19–29
  1. ^Szafron, Duane; Gibson, Richard; Sturtevant, Nathan (May 2013). 'A Parameterized Family of Equilibrium Profiles forThree-Player Kuhn Poker'(PDF). In Ito; Jonker; Gini; Shehory (eds.). Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013). Saint Paul, Minnesota, USA.

Poker Nash Trainer

External links[edit]

Tableau De Nash Poker

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Kuhn_poker&oldid=993681240'